$(a+b{)}^{3}={a}^{3}+3{a}^{2}b+3a{b}^{2}+{b}^{3}$

$(a-b{)}^{3}={a}^{3}-3{a}^{2}b+3a{b}^{2}+{b}^{3}$

$({a}^{3}+{b}^{3})=(a+b)({a}^{2}-2ab+{b}^{2})$

$({a}^{3}-{b}^{3})=(a-b)({a}^{2}+2ab+{b}^{2})$

$(a+b{)}^{3}={a}^{3}+3{a}^{2}b+3a{b}^{2}+{b}^{3}$

$(a-b{)}^{3}={a}^{3}-3{a}^{2}b+3a{b}^{2}+{b}^{3}$

$({a}^{3}+{b}^{3})=(a+b)({a}^{2}-2ab+{b}^{2})$

$({a}^{3}-{b}^{3})=(a-b)({a}^{2}+2ab+{b}^{2})$